
October 26, 2023

A Modular Approach to
Scraping Complex Web
Spaces
Andrew Harris
Senior Manager, Software Engineering

I’m Andrew Harris and I’m a Senior Manager of
Software Engineering at Zoominfo.

I work with a lot of really talented engineers on
complex problems related to the social
business space. My team spends a lot of time
working with social media data and the open
web.

At Zoominfo our solutions are aimed at
connecting sales teams to the business they
need to win, as quickly and accurately as
possible.

Outcome driven engineering teams like the one
at Zyte are a key part of how we do that.

What is a “complex web space?”
We define a complex web space as one where many users operate on a
nearly constant basis. A few good examples include social media
domains, search engines, large corporate indexes.

These entities are “complex” because they represent robust resourcing
for containing and making data publicly available at scale and for
observing traffic and activity patterns.

High traffic environments increase our responsibility to be good
stewards of these spaces by leveraging polite interaction techniques.

3

What kind of complex web interactions?
Complex web spaces require a wide range of treatment patterns in response to desired outcomes. For my team, we sought to find a unified
method for hosting the breadth of this range in one framework that could be leveraged by a diverse set of teams with varying levels of
software design and development experience.

As a person centric
platform there is a
constant need for our
services to interact with
social media data. We
routinely observe
updates to common,
publicly available, social
media sources to keep
our data as fresh as
possible.

Social media
interaction

Trend relevant
content listening

Real time search
behavior

Observation of
trend analytics

As the world around us
dynamically moves we
observe trends in search
response. Fluctuations in
search relevance can be
key indicators of a
variety of helpful signals
for our data and the
market as a whole.
Responding to these
microtrends effectively is
a key objective.

Trends across industries,
companies, geographies,
and professional spheres
must be accurately
reflected in our data
assets. Our analysis
teams have built a host
of modular tools that
leverage web extraction
on a real time basis.

As a culmination of the
previous categories -
pivoting our listening
engines to respond to
market signal becomes a
rational next step. Our
infrastructure for
planning and measuring
those pivots is built
around our
understanding of
extraction behavior.

4

Democratizing Modular Web Extraction
Extraction needs within complex web spaces are often just as complex and
and far more narrowly tailored than the spaces themselves.

Usually, as needs for data consumption grow, so does the complexity of those
extraction objectives. In most organizations these responsibilities require
advanced infrastructure that must be maintained and leveraged by advanced
engineering teams.

Often the knowledge needed tame these complex models often rests with
groups outside engineering teams. Creating an environment in which a user -
with minimal engineering experience - could significantly impact web
extraction goals became a focus of development.

5

CORE PROBLEM

How can we architect a modular
system for web extraction that

scales for all our users?

Defining Shared Objectives
Our internal users shared similar speed and throughout goals for web
extraction and for the majority of our teams an HTML payload was an
expected response.

Generally standardized output expectations are best supported a similarly
standardized range of input functionalities.

Cross functional availability of modular results enables faster development of
shared solutions. By adopting standard markup style language we further
lower the barrier for solutions engineering and scalable extraction.

Low-code environments supported by robust software infrastructure and an
eloquent scheduling system.

7

Early Pain Points to Refine Our Understanding
Interaction with a range of complex web spaces simultaneously - and with
the addition of a scheduling system by many users at once - significantly
increases exposure to detection.

Respecting individual extraction limits for web spaces while scaling to
efficient production levels demands the use of a range of technologies and
engineering solutions.

No single model for extraction provides a universal access point for perfect
data - hygiene and extraction must be balanced.

In a low code environment how a user understands system performance is
expressed as a function of outputs rather than system observations.

8

Timing is Everything?
Hosting an extraction service for a variety of users - both human and code
based - necessitates a robust scheduling mechanism.

Leveraging many extraction protocols with varying needs for call out and
return sequencing does not lend well to generalization. Orchestration of load
distribution for calling and processing returned data presents a resolution
challenge.

Weighted queuing with dynamic feedback from extraction processes prevents
the kinds of bottlenecks that often stall traditional concurrent crawlers.
Building a solution around a successful scheduling mechanism provides a
stable core for the entire infrastructure.

9

10

● The Job Planner is a RESTful web service framework, implemented as a Java Spring Boot /
WebMVC application on EKS, with pluggable modules that create execution plans from job
descriptions.]

● The Job Planner processes jobs in four steps:
○ Planning, where it selects a module based on job description and stores an execution plan

for the Job Router, potentially influenced by planning hints in Job Metadata.
○ Chunking, performed by the Job Chunker, breaks job data into blocks for later processing,

with validation failure marking a job as unprocessable.
○ Routing, following successful chunking, involves sending Job Metadata and chunks to the

Job Router via stream for scheduling and execution.
○ Reassembly, managed by the Job Reassembler, combines query blocks into a single job

result file, marking the job as complete once the reassembly is finished.

Planning Jobs

11

● The Job Router, a Java Spring Boot / WebMVC application containerized on EKS, is the most
complex service in the architecture, performing multiple interrelated tasks.

● Its tasks include
○ Scheduling uses a rules-based approach to allocate available capacity among jobs and

participants.
○ Stopping a job involves marking it as stopped and halting the dispatch of new blocks,

although currently executing blocks continue to completion.
○ Routing decides which Query Module to use for executing Query Blocks based on the

current operating environment and plan from Job Planning.
● Scheduling employs Weighted Fair Queueing (WFQ) for resource allocation, ensuring fairness

among teams and providing dynamic weighting for various scenarios.
● The WFQ scheduler iteratively monitors the work queue, selects Query Blocks for execution,

evaluates the Query Plan, and sends selected blocks to the Query Executor via stream.

Routing Jobs

12

● The Query Executor, a Java Spring Boot / WebMVC application hosted on EKS,
executes Query Blocks via stream, utilizing Query Modules and Result Parsing
Modules.

● The Job Router maintains separate streams for each Query Module.
● When a Query Block is received via stream, the Query Executor iteratively processes

each row in the block, first checking the Result Cache and using cached results if
acceptable, or making RESTful web service calls to the Query Module if needed.

● It stores results in the Result Cache, streams raw data to the Raw Result Store in
S3, and augments results with additional data from the cache if job hints allow.

● The Query Executor keeps track of Query Module responses and execution times,
then parses the information using the appropriate Result Parsing Module.

● Once a block is complete, the results are submitted via stream to the Job Router.

Executing Query Blocks

13

Executing Query Blocks
● The Query Executor, a Java Spring Boot / WebMVC application hosted on EKS,

executes Query Blocks via stream, utilizing Query Modules and Result Parsing
Modules.

● The Job Router maintains separate streams for each Query Module.
● When a Query Block is received via stream, the Query Executor iteratively

processes each row in the block, first checking the Result Cache and using cached
results if acceptable, or making RESTful web service calls to the Query Module if
needed.

● It stores results in the Result Cache, streams raw data to the Raw Result Store in
S3, and augments results with additional data from the cache if job hints allow.

● The Query Executor keeps track of Query Module responses and execution times,
then parses the information using the appropriate Result Parsing Module.

● Once a block is complete, the results are submitted via stream to the Job Router.

14

Where do we go from here?
Integrating a machine learning layer within the extraction architecture informs
outcomes related to yield classification and processing of extracted data.

Similar models enable generalization of structured HTML attributes for the
removal of superfluous content.

Advanced manipulation of data structures for enhanced pattern detection
provides an advantage for detecting changes in HTML structures in complex
environments.

Agnostic understanding of dynamic code structure changes in complex has
become more accessible since the advent of consumer grade LLMs.

15

