
Crawling like a Search Engine
A journey to crawling more than 1B pages a day

 Guillaume Pitel, CTO – Sept. 2022

Babbar : a short presentation

•We make tools for SEO
• Yourtext.guru : writing assistant for better content ranking

• Babbar.tech : provides a wide-angle view of the web, backlinks, content,
rankings => we need to crawl the WWW

Some common misconceptions

•The WWW is huge

•The WWW is full of valuable information

•Crawling the WWW is hard

WRONG : the world wide web is INFINITE.

It’s certainly ugly. Is it hard ? It depends

WRONG : the infinite majority of the WWW is crap

First steps in the crawl(ing) space

A bit of history

Goal (then) : feed our Machine Learning pipeline with lots of text.

1. We used CommonCrawl’s monthly dumps, which are mostly
agnostic in terms of language, genre and so on.

2. Every 3 months, the CommonCrawl foundation starts a 2 weeks
crawl and fetches approximately 3 Billion web pages with half of the
pages never visited before.

3. But a lot of the data in common crawl is of very low quality. And we
wanted to experiment on a specific subset of languages on the web

Starting our own crawling operation

•We started experimenting in 2017 and tried to crawl the good old
way:
• Get a few seed URLs, put it in a todo list

• Fetch the urls of the todo list, analyse their links

• Add the newly found links to the todo list

• Repeat (with just the new ones) until we have enough pages.

•We tried first with Apache Nutch, looked at Heretrix, then stumbled
upon BUbiNG(1) a “next generation” crawler.

•BUbiNG was amazingly fast, lightweight, easy to distribute and
relatively easy to operate. Also full of bugs.

(1) Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. 2018

First problems

• At first, everything was fine, typical crawl speed was 600
pages/second with 8 cores.
• But as time passed, we realized we were crawling more and more

crap.
• Also, BUbiNG holds the whole web frontier in memory or in disk

queues, but at some point, it starts to slow down because the frontier
is too big : remember the WWW is infinite.

Basically, BUbiNG is great at crawling, because it handles robots and
per IP/per host queues for politeness and because it is super efficient.
But managing the WWW frontier is not its strongest point.

Next Steps : our real goals

•Our real goals (now) :
• To have a continuous crawl and recrawl of the most interesting parts or the

WWW.

• To compute PageRank-like metrics on the WWW graph

• To store & serve the WWW graph

• To analyze the content of the page and create and index (albeit not a
search-engine one) for thematical/semantical orientation

A new architecture

Split responsibilities

• It quickly became obvious that we couldn’t improve BUbiNG in terms
of managing the what’s and when’s of crawling. Instead, we dumbed
it down.

•We removed all the web frontier-related bits and connected BUbiNG
to a message queue (Apache Pulsar), so it could receive crawl
requests, and publish the crawl results.

•And we started a new project to send crawl requests and process
crawl results.

Split responsibilities

A key requirement to add intelligence to a crawler is to be able to have
all the necessary data to decide to crawl or not to crawl a given URL

• In Apache Nutch, the intelligence comes from a Crawl DB which is
usually stored in Hbase, a distributed key-value row-oriented DB

•Nutch is batch oriented, between batches, one must recompute a
fresh PageRank (or similar), gather data about pages, hosts, domains,
etc. and update the crawl DB accordingly.

•This prevents a continuous operation of the crawler, computing
pagerank on a “snapshot” is the normal way to go

Managing the WWW graph

•We put together a distributed graph database that will also perform
computation
• A graph database normally stores nodes and links.

• We have a bit more :
• Url Views (every node of the graph, containing graph metrics)

• Backlinks (because that’s what really counts)

• Fetches (the analysed content of a page we have crawled)

• Hosts (aggregated information at host level)

• Domains (same thing)

• We also have « tables » for ip addresses and content hashes

Managing the WWW graph

•We set up a dual live / delayed system
• Live :

• we receive information about fetched pages,
• store it,
• and propagate links (through the message queues because backlinks are stored with the

target, not the source).

• Delayed
• We iterate over the databases
• Update URLs’ metrics
• For URLs which have been fetched, progagate links with updated metrics
• Compute aggregated metrics and statistics, update DB
• Evaluate each URL with the crawl / recrawl policy, send crawl requests

Architecture

WDL (Graph
DB +

processing)

BUbiNG
(barkrowler

version)

BUbiNG
(barkrowler

version)

BUbiNG
(barkrowler

version)

BUbiNG
(barkrowler

version)WDL (Graph
DB +

processing)

WDL (Graph
DB +

processing)

WDL (Graph
DB +

processing)

Message Queues (Apache Pulsar)

Crawl
Request

Fetch
Info

HTTP Queries

Architecture

WDL (Graph DB + processing)

Message Queues (Apache Pulsar)

DBs

Fetch consumer

Links consumer (on link target
partition)

Iterator

Fetch
info

Semantic Embeddings
service

Link
s

Links

Compute graph metrics

Links (w/ updated
metrics)

Crawl requests

Implementation details

• Compression
• in-memory compression using homemade Huffman model for URLs
• Semantic embeddings are highly compressed (up to 1:30 ratio)
• DB-level compression (RocksDB)

• Rocksdb is a Log Structured Merge-Tree (LSM) DB
• Append-only (no inplace modification)
• Efficient merge of sorted levels (compactions)

• How to use an LSM ?
• Avoid READ/UPDATE, instead use merges for maximum throughput
• Lots of tuning (Tree shape, Buffer Sizes, Trigger thresholds)
• Iterators are great, point lookup is great too but avoid for maximum

performance

Crawling your website ?

Some people don’t like being crawled

We try really hard to be good citizens

•Per-IP and per-host delay between crawls

•We respect robots.txt with crawl-delay

•We support HTTP 429 (too many request) to slow down crawling, but
very few web servers are configured for it

Some people don’t like being crawled

•We do receive some abuse notice, of course (not much compared to
the amount we crawl). I also received two phone calls from
concerned webmasters !

•Very often webmasters don’t bother reading our web page explaining
the crawling, even if it’s in the User-Agent string

• Some block us right away with various methods
• Robots.txt (ok, that’s fine)
• Firewall (ugh… timeouts)
• Htaccess (403, 401, 503, 200 with fake content) => bad idea, especially if on

robots.txt

•Bans can be made based on IP address or User-Agent

Numbers !

Crawling statistics

•4 crawlers (with 2 32-cores AMD cpus), 16 IP addresses

•We crawl 20k/s HTTP responses, 32k/s crawl responses (these include
non HTTP cases like network errors)

• So that’s about 3B urls “crawled” per day.

The graph database

•We started crawling for real
approximately 1 ½ years ago

• Since the beginning we have
crawled 796B non unique urls,
and 146B unique ones

•Domains are counted using
ETLD (for instance .co.uk is not a
TLD, but it’s an ETLD)

The graph database

•We have 60 servers for storing and computing the primary WWW
graph

•Total used storage size : 180TB (only !)

•Domains are counted using ETLD (for instance .co.uk is not a TLD, but
it’s an ETLD)

Thank you !
Guillaume.pitel@babbar.tech

CTO Babbar

mailto:Guillaume.pitel@babbar.tech

